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If the fluid conductivity is infinite, then the incident flow in which the
magnetic field is assumed to be absent cannot penetrate the region occupied by
the magnetic field (the magnetic lines of force are "frozen" into the fluid for
infinite conductivity)'. Hence, it fellows that the region being streamlined
consists of the magnetized body and a "cavern", a region in which is the magnetic
field. This region can be empty or can be filled with fluid. To be specifie,
let us consider the cavern to be filled with the streamlining fluid since the
fluid, although slowly, can penetrate within the cavern for a large but finite
conductivity.

Let us consider the stationary streamline flow case. Generally spesaking,
steady fluid motion is possible within the cavern but we shall subsequently con-
sider that the fluid is at rest within the cavern and we shall seek the shape of
the cavern and the magnetic field thersin. ILet us note that the velocity in
the cavern certainly equals zero when all the magnetic lines of force start and
terminate in the body. Putting v =0 in the magnetohydrodynamic equations, we
obtain:

(1) div E = 0 ; eradp = %E{rot 'i%]

where Pcav is the pressure within the cavern, where the following conditions
must he satisfied on the cavern-flow boundary (pf is pressure in the flow; ]
is the unit normal vector)

(2) () =0 ; Pp = Py, * %;; e

The first condition results from the absence of magnetic field sources and is
satisfied on the boundary of the region being streamlined and the second expresses
the fact that the normal stresses [the tangential magnetic stress automatically
equals zero by compliance with the first condition of (2)] are equal.

A magnetic field can be assigned within the body (when the body conductivity
is infinite, say) or the currents

e -
(3) jb i rot H
can be given in the body but the magnetic field intensity in the body must be
determined from the solution of the problem. Hence, the normal components of



of the vectors B and rot E must be continuous along the normal at the cavern-
body interface.

But equations (1) with their boundary conditiens and conditions within the
body do not give a unique seolution of the problem. Actually, the stationary
motion being considered as arlsing from a rest state can depend on how the
magnetic field was "frozen" in the fluid in the original state.

In order that the solution of the problem should be independent of the
original state and should only depend on the comnditions within the body, let us
impose the following additional conditions (which are not obligatory, generally)
on the magnetic field.

Let
(4) rot rot B = 0
within the cavern and let
(5) [rot ﬁvgl = 0

on the cavern-stream interface. These conditions were obtained in an attempt
to isolate that solution to which stationary solutions with finite, constant
conductivity o approach as o -»o . Here, it was assumed that there is a
reglon where ¥ =0 in the neighborhocd of the body and alse that the last

term in a generalized Ohm'’s law
7= o%.’ + %ﬁ’m}

Equations (3) and (4) can be cowbined into one squation describing the

approaches zero as ¢ —»m

magnetic field in the whole region being stresmlined:
2 >

(6} rot rot H = %5 rot'3£
where -3b is a function agreeing with tie currspnts within the body and zere
outside, where the vecteor ‘3£ itself wmust be given on the bedy-flow interface,
if such exists.

Now, let us show that if the cavern shape is known beforehand and the
region being streamlined is finite, then (6) with the first equation of (1) and
their boundary conditions can have only en unigue solution. To da this, let us

-

show that the difference of the two sclutions 'ﬁi - 32 =~ﬁs is zero. Actually,

ﬁ; satisfies (U) everywhere in the region being stresmlined and satisfies (5)

and the first condition of (2) on its whole boundary. Hence, we conclude that
{n rot ﬁs = grad T



and that f = const on the boundary. Taking the div of both sides of (7), we
obtain Af = 0 and, therefore, grad £ = O everywhere in the region being
streamlined. Then, it follows from (7) that .ﬁj = grad ¥ and, taking the first
equality of (1) inte account, we obtain Ay = O and the equality % =0 will
be satisfied on the boundary because of the first condition of (2). Therefore,
¥ = const and §3=0 .

Equation (6) is simplified when the problem is planar or axisymmetric. Let
us introduce the x,y,z coordinates in the planar case (the x and y axes are
in the plane of symmetry) and the coordinates x,y,¢ in the axisymmetric case
(the x axis is the axis of symmetry). The currents within the cavern
3 = ﬁ; rot B are in the xy plane in both cases. This fellows from (4) and (5)
as well as from B = O in the incideat flow. Consequently, (6) can be writtenm
as follows:

In tkhe planar case

baﬂz+82'ﬂz &&z(éjbxﬂ%x)
axz aya e \oy

where condition (5) will be
In the planar case aHz

X R E
In the axisymmetric case 35172 +-20 =0
2.7 > v a“jbx a'jb\
where = 1la + :)ny is the unit normal vector. If W - —&fl = 0 , then
Hx and Hy can equal zere and the problem reduces te the integration of the
following twe equations im this case:
mtisjb ; div H =0

ard we obtsin Pogy = const from the second equatien of (1).

Let us analyze several very simple examples assuming that Hz =0,

1. Flow arocund a plane magnetic dipele perpendiculsr te the flow by ar



incompressible fluid. The surface being streamlined is a cylinder whose radius
we will denote by a .. The magnetic field within the cylinder and the fluid
velocity outside it are given by 2 2
H=81°adHoy( -—23—;‘;) ; v=graduox<1+ 2“ 3
X +y x +y
where U o and Ho are constants related by means of
B, = 8¢l
The pressure within the cylinder P, is constant and related to the stagnation
pressure of the incident flow P, aslf’ollows:
P, - P, = 1% H

[e] O

c

2. Supersonic flow around a wedge along whose surface a current of con-
stant density 1 flows parallel to the edge of the wedge. To be specific, let
us consider that the current flows in opposite directions on the different edges
of the wedge. The flow picture and the behavior of the magnetic lines of force
are shown on figure 1.

The line I is the plane of symmetry, II is a shock wave, III is the

n cavern boundary and IV is the wedge edge.

The streamlines after the shock wave travel

N parallel to the cavern boundary; the external

m

flow pressure P is constant. The magnetic
1 4 lines of force in the cavern travel parallel
Figure 1 to its boundary and the magnetic field
intensity Hc is constant. The pressure in the cavern is related to the flow

av
pressure by means of the relation

1
Pf = peav + Bx Eiav

The magnetic field intensity within the wedge Hw is congtant and related
to E@av and 1 by means of . ‘
H,,8ina =Hsin B ; is= H(Hcavcos a + Hw@osﬁ)
It is easy to see that the minimum current intensity required to maintain

the pressure difference P - Pcav is reached at a =0 and equals

-
"win "= YP¢ ~ Peay
Vax
where 1, 1s & very large quantity. Thus, for example, if p. - p . =1 atm,



then i_. = 4000 %/cm .
min

Thus, a necessary condition for the existence of a cavern is i >'imin .
Otherwise, the cavern is missing and the usual flow around a wedge occurs.

5. Supersonic flow around a cone along whose surface flows a current of
constant density 1 directed perpendicularly to the cone generators. The
streamline picture remains approximately the same as the streamlines behind the
shock wave and the magnetic lines of force in the cavern cease to be straight.

The behavior of the magnetic lines of force in the cavern is given by

B, =C (1 +cos e ln tan %6) + C,cos 6
Hy = C(cot © - sin 6 1n tan #8) - C;sin @

Here Hr is the magnetic field intensity component along the radius-vector
drawn from the cone vertex; © is the angle made by the radius-vector with
the axis of symmetry; He is the magnetic field intensity component perpend-
icular to Hr . The constants Cl and ca are determined from the conditions
on the cavern boundary (for 6 = a + B)
Bg =0 Pfgpcav+%?ﬂi

The magnetic field intensity is constant within the cone and the magnetic
lines of force are parallel to the axis of symmetry. The surface current
density is determined from the equality

H

cav & e t)

where Hcav t and Hc ¢ are the tangential magnetic field intensities of the

cavern and the cone, respectively, on the cone surface. An imin also exists

i gﬁ;(x

for a cone, which is expressed by the same formula as for the wedge.
Moscow University June 2, 1957



